

## Overview of Canada's Action Plan on Aviation Emissions and Alternative Fuels

Ted McDonald

Senior Environmental Protection Specialist (Aviation)

Transport Canada, Civil Aviation

NASA ACCESS II Data Workshop, 09 January 2014







## **Purpose**

• Outline Canada's roles, responsibilities and activities related to aviation emissions and alternative fuels.











## Canadian and US Federal **Organizations**



Transport Transports
Canada Canada











### **Transport Canada's Responsibilities**

- Ensures a safe, secure, efficient and environmentally responsible Canadian transportation system
  - Assess safety, security and economic implications in proposed environmental measures
- Regulates all emissions from the aviation, marine and rail sectors – leads Canadian participation and involvement at the International Civil Aviation Organization (ICAO) and the International Maritime Organization (IMO)
- Removes barriers to enable take-up of clean technologies e.g., modernized and harmonized codes, standards, test protocols, targeted incentives, research



## **The Current Approach**

The Government of Canada promotes clean transportation by:

- 1. Creating and implementing regulatory regimes:
  - In consultation with our partners, such as the International Maritime Organization (IMO) and the International Civil Aviation Organization (ICAO), and aligned with the U.S., where appropriate;
  - Sector-by-sector approach.
- 2. Implementing complementary measures to support the uptake of clean transportation technologies and innovative practices:
  - Voluntary agreements with industry;
  - Programs that provide economic incentives to support deployment;
  - Research and information on new technologies.



## **Common Objectives**

- Environmental goals include reducing or minimizing:
  - aircraft noise
  - impacts on air quality
  - impacts on the global climate
- R&D is a key component
  - Improved measurement / understanding
  - Clean technology
  - Efficient operations





## **Aviation Environmental Impacts**

#### **Noise Impacts**



**Climate Impacts** 



**Air Quality Impacts** 



**Other Impacts** 







### What's Missing?







## **Aviation Environmental Impacts**





# **Aircraft Condensation Trails** "Contrails"









## Why Study Aircraft Engine Emissions and Contrails?

- Public concern
- Emissions deposited at cruise altitudes
- Climate impacts
  - Significance of H<sub>2</sub>O
  - Role of particulate matter (including Black Carbon)
  - Impacts from alternative fuels





### Canada's Airspace

- World's second-largest ANSP (by traffic volume)
- 12 million aircraft movements a year
- 18 million square kilometres
   (domestic airspace and out to
   centre of the North Atlantic...
   > 1,200 flights/day)
- Areas of significant importance for contrails







## Canada's Action Plan to Reduce GHG Emissions from Aviation

#### Goals:

- 2% fuel efficiency/year from 2005 to 2020
- Carbon neutral growth from 2020
- Absolute 50% GHG reductions by 2050

#### Measures:

- Fleet renewal
- Improved ATM
- Alternative aviation fuels





# Canadian Aviation Environmental Research Priority Areas and Efforts

### 1. Aviation Impacts on the Global Climate

- Aviation Emissions Impacts in the Arctic (York U/EC/FAA)
- New ICAO aircraft CO2 standard (ASCENT)

### 2. Aviation Impacts on Air Quality

 Cdn measurement technology (LII 300) and real-time calibration technology for new ICAO nvPM standard and methodology (NRC/GARDN/ASCENT)
 \*also important for climate impacts

#### 3. Aviation Alternative Fuels

- ICAO Alternative Fuels Task Force
- Fuel, engine and flight testing (GARDN/NRC/EC)
- NASA ACCESS II (NRC/NASA/FAA)
- Cdn biojet value chain assessment (BFN/ASCENT)



## Canadian Research – Measurement & Testing











## Canadian Research - Modelling





## Canadian Research – Alternative Fuels BioFuelNet Canada

#### **Public-Private Network**

 brings together the Cdn biofuels research community to address key challenges

### Task Force 6: Aviation (\*new)

 involve researchers in feedstock, conversion, engine operations, policy, LCA, economics and supply chain.



Need estimated at 200 - 250 million litres by 2020



# Next Steps – Continued Collaborations with Key Partners











Green Aviation Research & Development Network

Groupement Aéronautique de Recherche et Développement en eNvironnement







